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Abstract
The concentration dependence of the susceptibility of aggregate-free ferrofluids
was investigated. The ferrofluids consisted of oleic-acid-grafted magnetite
particles in cyclohexane. One of the samples contained strongly interacting
particles (interaction strength of approximately 5kT ). Qualitatively, the
measurements are in agreement with theoretical predictions on dipolar
hard-sphere fluids: dipolar interactions raise the susceptibility above the
ideal (Langevin) susceptibility, and when plotted as a function of the
Langevin (ideal) susceptibility, the measurements on the two samples are very
similar. Quantitatively, theoretical predictions overestimate the experimental
susceptibilities at higher ferrofluid concentrations.

1. Introduction

The dipolar hard-sphere (DHS) model is the starting point for the theoretical description of
polar molecules. Calculating the properties of this model system has proven to be a hard
problem. Since Debye published the first paper on the dielectric constant of polar molecules [1]
in 1912, several alternative calculations of the dielectric constant have appeared [2–6], some
very recently [7–10]. The ongoing debate over presence or absence of a stable gas–liquid
equilibrium in DHS fluids [11, 12] illustrates that this system is still not well understood.

Although polar molecules resemble the DHSs in some aspects, they have properties that
complicate testing of the predicted dielectric constant against experimental values, such as
a non-zero polarizability, a non-spherical shape, and van der Waals interaction. Therefore,
ferrofluids [13] have been used instead for direct comparison with theory [14–16]. These
colloidal dispersions contain nearly spherical, single-domain magnetic particles. The particles
have a permanent magnetic dipole moment, negligible magnetizability, and can be made
approximately hard repulsive, thus making them essentially DHSs. Ferrofluids are flexible
1 Author to whom any correspondence should be addressed.
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model systems: the strength of dipolar interaction between the particles can be adjusted by
means of their size or the temperature, and their number density can be conveniently modified
via the amount of solvent.

The most commonly studied ferrofluid consists of an apolar solvent (typically kerosene)
in which magnetite (Fe3O4) particles with a typical diameter of 10 nm are dispersed.
A monolayer of oleic acid grafted on the surface of these particles prevents massive
irreversible agglomeration. Unfortunately, these ferrofluids are always polydisperse: a relative
polydispersity of 40% is not uncommon. This property complicates a quantitative comparison
of measurements with theoretical predictions, but the polydispersity is at least determined
in most studies. A more serious problem is the presence of small irreversible aggregates, the
formation of which during synthesis can hardly be prevented (these should not be confused with
the chain-like aggregates that may form reversibly due to dipole–dipole attraction). Acting as
magnetizable particles, such aggregates can obtain a large dipole moment in a magnetic field
and can dominate the magnetic properties of ferrofluids, or, as Scholten [17] put it, ‘the colloid
becomes a caricature of a magnetic fluid’.

It is the aim of this study to compare susceptibility measurements on aggregate-free
ferrofluids with theoretical predictions. In one of the ferrofluids, the dipolar interaction strength
is about seven times larger than in usual ferrofluids. This sample was obtained by isolating the
large particles using size-selective precipitation [18, 19]. The susceptibility is measured at a
fixed temperature as a function of concentration over a large concentration range. Corrections
and uncertainties associated with temperature-dependent measurements, such as for expansion
of the solvent, decrease of the magnetization, and possibly a decline of colloid stability, are
thus avoided.

The results of our study show that, firstly, the susceptibilities expressed in terms of the
ideal (Langevin) susceptibility are very similar for the two systems, despite their difference in
interaction strength. Secondly, all tested theories, except Onsager’s theory, overestimate the
measured susceptibilities.

2. Theory

If a magnetic field H is applied to a ferrofluid, the magnetic dipole moments m of the magnetic
particles tend to align parallel to that field, causing a net magnetization M = nm〈cos θ〉 with
n the particle number density, θ the angle between a magnetic moment and the field, and
〈 〉 denoting the thermal average. The initial susceptibility χi = (∂M/∂H)H→0 defines the
strength of response to an applied field. In the case of non-interacting dipoles, corresponding
to a dilute ferrofluid, the susceptibility is called the ‘Langevin susceptibility’, χL:

χL = µ0nm2

3kT
, (1)

where µ0 is the permeability of vacuum and kT the thermal energy.
In ordinary ferrofluids, the dipole–dipole interaction is about 1kT , which is sufficient

to affect the susceptibility of concentrated ferrofluids. Accounting for dipolar interactions
is a long-standing problem, which was studied as early as 1907 by Weiss [20] to explain
ferromagnetism and the existence of the Curie temperature. His theory is based on the idea
that each dipole experiences an effective field H , which is composed of the externally applied
field H0 plus a field κM due to all other dipoles. In liquids, the value of κ is determined by
the shape of the imaginary cavity in which each dipole is thought to reside. The susceptibility
according to this model is

χi = χL

1 − κχL

(2)
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where χL is given by (1). For a spherical cavity, κ is 1/3. A result equivalent to (2) was
obtained by Debye in 1912 for the dielectric constant of polar materials [1] (because electric
and magnetic dipoles are analogous, expressions for the dielectric constant ε can be translated
to ones for its magnetic counterpart, the magnetic permeability µ = χ + 1).

According to (2), χi diverges at χL → 3, a phenomenon observed neither in dielectric
materials nor in ferrofluids. By decomposing the effective field into a ‘cavity field’ parallel
to the external field and a ‘reaction field’ parallel to the central dipole, Onsager was able to
show that the predicted spontaneous polarization is a result from the incorrect assumption that
the reaction field exerts a torque on the central dipole [2]. In Onsager’s theory, divergence of
the dielectric constant is absent, in accordance with experience. The susceptibility following
from this model is

χi = 3
4

(
χL − 1 +

√
1 + 2

3χL + χ2
L

)
. (3)

Kirkwood later generalized Onsager’s theory [3], and Wertheim solved Kirkwood’s result
within the mean-spherical model (MSM) [4]. The susceptibility within the MSM is

χi = q(2ξ) − q(−ξ)

q(−ξ)
; q(ξ) = (1 + 2ξ)2

(1 − ξ)4
(4)

where the parameter ξ can be found by solving χL = q(2ξ) − q(−ξ).
More recently, perturbation theories have gained in interest. These theories are based on

expansion of the free energy in the volume fraction φ = n(π/6)d3 (d is the particle diameter)
and/or dimensionless interaction strength λ = µ0m

2/(4πkT d3). The first (exact) terms of the
expansion are [8, 9, 21, 22]

χi ≈ χL + 1
3χ2

L + 1
144χ3

L + · · · . (5)

The linear and quadratic term in (5) can also be found by expanding any of the expressions for
χi described in this section in terms of χL. The correct cubic term is only obtained from the
MSM.

Note that, although interaction strength and concentration are independent, they appear
only as the single, combined variable χL = 8φλ in equations (2)–(5). Expansions to higher
orders give expressions which depend on φ and λ separately [7–10, 22].

3. Experimental procedure

3.1. Ferrofluids and fractionation

A high-quality ferrofluid, called FFR, was fractionated by size-selective precipitation, using
pentanol as a bad solvent. This ferrofluid consisted of Fe3O4 colloids, grafted with purified
oleic acid and dispersed in cyclohexane of analytical purity. Unreacted oleic acid was removed
by repeated precipitation and redispersion. Clustered particles were removed by magnetic
filtration.

In the first fractionation step, FFR with a particle concentration of about 10% by volume
was partially destabilized by stepwise addition of pentanol. After each addition, the sample
was ultrasonicated for 5 min and left undisturbed for at least 4 h to let aggregates settle.
The supernatant was separated from the sediment when the magnetic susceptibility of the
supernatant indicated that about half of the particles were flocculated. Both the sediment and
the supernatant, called FFR-S and FFR-L respectively, were fractionated once more by adding
pentanol or cyclohexane.

Pentanol was removed by precipitating and washing all four fractions with ethanol. After
drying in a dry nitrogen stream, the products were redispersed in cyclohexane.
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Figure 1. A schematic drawing of one transformer. (1) Helmholtz coils, generating a homogeneous
magnetic field of 100 A m−1; (2) a secondary coil, measuring χi ; (3) the sample tube. The
susceptibility meter contains two identical transformers of this kind.

3.2. Characterization

The physical diameter of the core of Fe3O4 particles, dc, was obtained from transmission
electron microscopy pictures, taken on a Philips CM10 microscope, and analysed with IBAS,
an electronic image analysis system.

Magnetization measurements were performed on a MicroMag 2900 AGM (Alternating
Gradient Magnetometer, Princeton Measurements Corp.). Samples were contained in small
glass cups with internal dimensions of 4 × 3 × 0.4 mm, which were sealed by gluing a
small cover glass over the open end. All measurements were performed at room temperature.
The saturation magnetization and diamagnetic susceptibility were determined by fitting the
magnetization curve at high fields (up to 1.2×106 A m−1) with the Langevin function [13,23]
and an added diamagnetic contribution:

M = Ms

{
coth(α) − 1

α

}
+ χdiaH ; α = µ0mH

kT
(6)

where Ms is the saturation magnetization of the sample, χdia the diamagnetic susceptibility, H
the applied field strength, m the magnetic moment of particles, µ0 the permeability of vacuum,
and kT the thermal energy. The initial susceptibility χi was calculated from magnetization
data at applied fields below 103 A m−1. These points invariably lie on a straight line. The
magnetic core size of particles was calculated using the low-field approximation of (6):

χi = Ms

µ0m

3kT
+ χdia = Ms

µ0Ms,Fe3O4πd3
M

18kT
+ χdia (7)

withMs,Fe3O4 the saturation magnetization of bulk Fe3O4 (4.8×105 A m−1) anddM the magnetic
core diameter. To minimize the influence of magnetic interaction between magnetite particles,
equation (7) was only used for measurements on dilute samples, having a concentration of
magnetic material below 10 g l−1. It should be noted that the diameter dM can deviate
significantly from the physical diameter dc obtained with TEM. One reason is that d3

M actually
equals 〈d6

m〉/〈d3
m〉 [24, 25] (dm is the core size of one particle), so polydispersity strongly

increases the diameter found with (7). A second reason is that the surface of particles may be
non-magnetic [13, 25].

Small-angle x-ray scattering (SAXS) experiments were carried out at the DUBBLE
beamline (BM26) at the European Synchrotron Radiation Facility in Grenoble. Scattering
experiments were conducted on dilute samples (φ < 1%). The radius of gyration, Rg , was
calculated using the low-q approximation of the scattering intensity of a dilute dispersion [26]:



Susceptibility measurements on a fractionated aggregate-free ferrofluid 4919

ln[I (q)/I (0)] = −R2
gq

2/3, where q = (4πn/λ0) sin(θ/2) is the scattering vector, θ is the

scattering angle and λ0 = 1.03 Å the wavelength of incident radiation.
The mass density ρ of a dispersion was measured with an DMA 5000 densitometer (Anton

Paar). Combined with the mass concentration c this yields the density of dry particles ρdry :

ρdry = cρsolvent

c + ρsolvent − ρ
, (8)

which is used to calculate volume fractions of samples with known weight concentration.

3.3. Susceptibility measurements

The concentration dependence of the susceptibility was measured on a Kappabridge KLY-3
susceptibility meter (Agico). The KLY-3 applies a homogeneous field of 300 A m−1, oscillating
at a frequency of 875 Hz. All measurements were done at 296.65 ± 0.2 K.

Ferrofluid samples were contained in 300 µl cylindrical glass tubes with a length/diameter
ratio of 9. With the field applied along the long axis of the sample, demagnetization effects [27]
can be neglected, as was experimentally confirmed by measuring samples with higher
length/diameter ratios. It was also verified that the instrument’s read-out value depends linearly
on the susceptibility of the sample. And finally, the susceptibility was measured for eleven
dilute samples of FFR with χi < 2. This curve should follow χi = χL(1+χL/3), regardless of
particle shape or polydispersity, because the radial distribution function at low concentrations
is spherically symmetric (hence the factor 1/3) and the same for each kind of particle.

The concentration-dependent susceptibility of FFR-LL was also measured in a home-
made set-up using two transformers of the type shown in figure 1. Each transformer consists
of two coils in the Helmholtz configuration and one small, thin pickup coil, positioned halfway
between the Helmholtz coils. The Helmholtz coils generate a homogeneous magnetic field
of 100 A m−1, oscillating at a frequency of 875 Hz. The oscillating field produces an
oscillating voltage difference over the pickup coil. The pickup signal is compensated by a
second (reference) transformer, and measured with a lock-in amplifier. When a sample tube is
inserted in one of the pickup coils, the resulting voltage difference over the two pickup coils
is proportional to the susceptibility of the sample.

In this ‘balanced transformer’ set-up, a concentration series was measured by drying some
FFR-LL in a long 8 mm wide sample tube under a dry nitrogen stream, and measuring the
susceptibility after successive dilutions with cyclohexane. After each dilution, the sample was
weighed and left to equilibrate for at least 15 min before the susceptibility was measured. The
concentration was calculated afterwards from the weights of dry material and dispersion and
the densities of dry material and cyclohexane.

The frequency dependence of the susceptibility was also measured in the balanced
transformer set-up. As the susceptibility is measured at approximately 1 kHz, there is the
danger that the measured quantity is not equal to the static susceptibility [28]. In fact, a
frequency dependence below 1 kHz has been found before for similar ferrofluids [29]. To test
whether the same effects can occur in our measurements, the dynamic susceptibility of FFR
with a concentration of 1500 g l−1 was measured from 10 Hz up to 10 kHz (the limit for our
instrument).

4. Results and discussion

4.1. Characterization

Fractionation. Precipitation of FFR started at a pentanol volume fraction of 50% and
complete precipitation was found at 90%. These percentages were, however, strongly affected
by small temperature variations.
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Figure 2. Electron microscopy pictures of the four ferrofluid fractions, shown at the same
magnification; see table 1 for details.

Figure 3. Magnetization measurements of the four ferrofluid fractions. The difference in particle
size between samples is evident from the difference in initial slope.

Table 1 shows the characteristics of FFR and the four ferrofluid fractions. Both TEM
(figure 2) and magnetization measurements (figure 3) yield significant differences between
the mean diameters and hence the maximum strength of dipole–dipole interactions in the
fractions. Fraction FFR-LL is especially interesting, for it consists of large particles of a size
not reported before. Dipole–dipole interaction can become as strong as −5.4kT in this system.
Despite its strong interaction, FFR-LL is stable at volume fractions up to 35%, possibly higher.
Conversely, adding cyclohexane to dried FFR-LL does not give an ‘instant ferrofluid’, not even
an immediate coloration of the solvent, whereas cyclohexane instantly becomes black when
added to dried samples of the other fractions. For FFR-LL it takes about ten hours before
redispersion is complete. Apparently, the strong interaction makes redispersion difficult, but
it does not prohibit a stable ferrofluid.

The polydispersity was reduced from 26% (FFR) to 18% (FFR-LL), which is somewhat
less than expected. Similar behaviour was found in fractionation studies on aqueous
ferrofluids [30, 31], where size sorting resulted in different mean sizes but almost the same
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Table 1. Characteristics of ferrofluid and ferrofluid fractions.

Sample dc (nm)a σc (nm)a dM (nm)b ρdry (kg m−3) λ

Unfractionated FFR 9.1 2.3 11.3 2900 0.40
Fraction FFR-SS 7.9 1.3 7.7 0.25
Fraction FFR-SL 9.7 2.6 9.9 0.55
Fraction FFR-LS 11.4 2.8 11.7 1.0
Fraction FFR-LL 15.0 2.8 15.22 3630 2.7

a Determined from TEM pictures.
b Obtained from magnetization measurements.

polydispersity. Still, the polydispersity of all samples used here is lower than the polydispersity
of 40% that is often reported in the literature. The fractionation method described here can
perhaps be improved upon by varying the temperature to modify the solvent quality of the
pentanol/cyclohexane mixture. In this way, a more gradual and homogeneous precipitation
can be achieved, possibly yielding fractions with lower polydispersity.

Aggregation. Figure 4 shows the Guinier plot of a dilute sample of FFR at small scattering
vectors. A straight line fits the scattering curve well and gives a radius of gyration of 6.5 nm.
For homogeneous spherical particles, the physical diameter is d = 2Rg

√
5/3 = 16.8 nm.

Because scattering by the grafting layer is negligible, this diameter is that of the iron oxide
core. The difference between the SAXS diameter and TEM diameter can be largely attributed
to polydispersity. If particle sizes are log-normally distributed, then [24]

dSAXS

dT EM

=
√

〈d8〉/〈d6〉
〈d〉 = exp(7σ 2)

exp(σ 2/2)
. (9)

Substituting σ = 0.26 and 〈d〉 = 9.1 (see table 1) in (9) yields dSAXS = 14.1 nm. The linearity
of the Guinier plot up to the smallest q-value and the fairly good agreement with TEM data
clearly demonstrate the absence of a significant number of clusters. This test is even sensitive
for small clusters, such as doublets: a doublet containing two particles of diameter d has a
radius of gyration of Rg = 1

2d
√

8/5, which is 1.63 times as large as Rg for a singlet of the
same diameter. A significant number of doublets would therefore lead to a much larger radius
than we found here. For triplets and larger clusters, the sensitivity is even higher.

Absence of a sediment in ferrofluid samples is insufficient to allow one to conclude that
clusters are absent [17]: sediments only form when the gravitational length [32] lg = kT /Nmg

(N = number of particles in a cluster, m = mass of a single particle, ≈3×10−21 kg (corrected
for buoyancy), g = Earth’s gravitational constant) is less than, say, a millimetre. This condition
is only satisfied for clusters of about 100 particles or more; smaller clusters simply remain
dispersed due to their Brownian motion. Moreover, the sedimentation velocity of a 100-particle
aggregate is only u ≈ Nmg/[6πη0(N

1/3d)] = 100 µm day−1, so sediments of such aggregates
take typically months to develop (if they develop at all; sedimentation is easily disturbed by
thermal convection).

The absence of clusters is in agreement with dichroism and rheological measurements
done with the same kind of ferrofluid [33].

4.2. Susceptibility measurements

Verifications. The low-concentration susceptibility profile of FFR was fitted with the
polynomial χi = kc(1+Qkc) with kc = χL; c is the concentration, k a proportionality constant,
and Q a coefficient which should correspond to the Lorentz factor 1/3 (see (5)). Q was found
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Figure 4. A Guinier plot of the SAXS measurement for diluted ferrofluid. Linearity up to small q

and agreement between the Guinier radius and TEM radius, and polydispersity, indicate the absence
of aggregates.

to be 0.37 ± 0.06, which agrees with the expected value within experimental accuracy. This
also demonstrates that demagnetization effects are negligible (the demagnetization factor can
be simply calculated as 1/3 − Q).

The susceptibility of the concentrated FFR sample shows no dependence on the frequency
up to 10 kHz. This was not surprising, since the relaxation times of magnetic moments in this
ferrofluid are orders of magnitudes smaller than 10−4 s, even for the larger particles. Consider,
for example, a particle with a diameter of 20 nm (including the oleic-acid layer). In a dilute
ferrofluid, it will have a Brownian relaxation time [13] τB = πd3η0/(2kT ) = 3 × 10−6 s in a
solvent with a viscosity η0 = 10−3 Pa s. Increasing the concentration will slow down rotation,
but studies on the rotational diffusion of hard spheres show that this increase in relaxation time
is only by a factor of about three. Relaxation times much longer than those calculated here
can only be expected for large particles (with long Néel relaxation times) which are part of
an aggregate. This point was also put forward in [34], and even used to measure the sizes of
aggregates.

Susceptibility curves. For the samples FFR and FFR-LL, susceptibility measurements are
shown in figure 5. The ordinate values χL were calculated from the concentration c with
χL = kc, where the proportionality constant k was obtained by fitting measurements on dilute
samples with the low-concentration expansion χi = χL(1+χL/3). This approximation differs
by less than 2% from the exact values at χL < 0.3. In figure 5(b), the k obtained from the
balanced transformer data was also used to rescale the Kappabridge data. The proportionality
constants for FFR and FFR-LL are k = 4.70 and 18.6 m3 kg−1, respectively.

The volume fraction φ, calculated from the mass concentration c and the density ρdry

(table 1), is also shown in the graphs. Note that φ is only an approximation of the true volume
fraction, since it is obtained from the density of dry material.

The concentration dependent susceptibility of FFR-LL is of particular interest, because the
polydispersity in particle sizes is relatively low and the mean magnetic dipole moment (and
hence also dipole–dipole interaction) is very high for Fe3O4-based ferrofluids. Despite the
significant difference in particle size and dipolar interaction strength, the susceptibility curves
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Figure 5. Concentration-dependent susceptibilities of (a) the unfractionated ferrofluid and
(b) fraction LL, containing the strongly interacting particles. Solid symbols indicate measurements
taken with the Kappabridge, open symbols ones taken with the balanced transformer. The lines
denote different theoretical curves (L: Langevin; O: Onsager; M: MSM; P: Perturbation theory;
W: Weiss).

of FFR and FFR-LL plotted as a function of χL (figures 5(a) and (b)) are very similar: the
maximum relative difference in χi between the two curves amounts to 14%. This dependence
of χi on χL alone is also seen in equations (2)–(5).

As expected, dipolar interactions lead to non-Langevin behaviour at high concentrations
(figure 5). However, none of the theories described in section 2 appears to describe our data
very well. Surprisingly, the MSM overestimates our results, while the MSM probably gives an
underestimate of the true susceptibility (for DHS fluids) [7]. This is also supported by Monte
Carlo simulation results [35], though it should be noted that obtaining accurate susceptibilities
from simulations has proven to be a very hard problem [36].

Our results are in disagreement with previous conclusions that the concentration-
dependent susceptibility of oleic-acid/magnetite ferrofluids is well described by the MSM [15,
28, 37]. We cannot account for this discrepancy, but speculatively ascribe it to a difference
in degree of aggregation (in a subsequent paper reporting a detailed study of aggregation,
the same author found that in similarly prepared ferrofluids, about half of the particles are
present in irreversible aggregates [34]). Interestingly, Fannin et al [16] seem to find a similar
discrepancy: they report that the slope of the susceptibility curve increases with increasing
concentration, but at a lower rate than reported in [37].

The experimental curve of FFR (figure 5(a)) seems to be well described by a second-
order polynomial in the concentration c, χi = kc(1 + Qkc), with the quadratic coefficient
Q = 0.160 ± 0.024. However, the scale misleads the eye: the curve at low concentrations is
best described with Q = 0.37±0.06, as was already mentioned. Still, because the influence of
the quadratic term is small at low concentrations, the data in this regime are not very sensitive
to the exact value of Q, so Q = 0.160 also describes the data reasonably well.

For the description of FFR-LL (figure 5(b)), inclusion of the cubic term is essential.
This can be seen in figure 6, where χi/c is plotted against c. The curve is clearly non-
linear; hence a fit of χi with a quadratic function is not adequate. The susceptibility of
FFR-LL follows the function χi = kc(1 + Qkc + Ck2c2) with Q = 0.235 ± 0.004 and
C = −0.0160 ± 0.0006. The sign of the coefficient C does not correspond to that of the
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Figure 6. Susceptibility measurements on FFR-LL. The data in this representation are better
described by a parabolic function (solid curve) than by a straight line (dashed line), meaning that
a polynomial formula for χi(c) should include a c3-term.

perturbation theories, e.g. equation (5), but in the parametrized dielectric constant according to
the linearized hypernetted chain (LHNC) approximation [38], the cubic coefficient is negative.

5. Conclusions

In this paper, concentration-dependent susceptibility measurements on two aggregate-free
ferrofluids were discussed. The ferrofluids consisted of oleic-acid-grafted magnetite particles
in cyclohexane. Although the strengths of interaction were significantly different for the two
samples (approximately 1kT and 5kT ), the susceptibility curves plotted as a function of the
Langevin susceptibility were very similar. Such behaviour is in accordance with most theories.

At higher concentrations, the curves deviated from theoretical curves according to
perturbation theory, the MSM, and Onsager’s theory. The concentration-dependent
susceptibility of the sample with the weakest interaction could be well described by a
second-order polynomial. For the sample with strongly interacting particles, a second-order
polynomial was not adequate: inclusion of the cubic term was shown to be necessary.

Although the data were compared with different theories in this paper, this should not be
seen as a rigorous test for those theories. We tend to conclude that magnetite-based ferrofluids
are not suitable for this purpose, because the particles are somewhat non-spherical (especially
the larger ones) and polydisperse, whereas monodisperse spheres are considered in theories.
In principle, theories could be adapted for polydispersity; at low concentrations, the effect of
polydispersity can be readily incorporated into, for example, perturbation theories. However,
just in the regions where the non-ideality of the susceptibility becomes significant, accounting
for polydispersity is much more difficult. Rather than adapting the various theories to the
shortcomings of the experimental ‘model’ system, we would like to encourage experimentalists
to do similar studies on other types of ferrofluid which resemble the monodisperse DHS
fluid more. Although the polydispersity of magnetite-based ferrofluids can be reduced, as
shown in this paper, it is still significant. Moreover, the problem of the irregular shape
of these particles remains. A better candidate for an experimental system to be used for
testing DHS theories would be cobalt-based ferrofluid [39,40]. Despite the drawback of being
susceptible to oxidation, cobalt colloids have the advantage of being truly spherical, having a
low polydispersity (between 5 and 10%) and a better-tunable dipolar interaction strength.
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[10] Huke B and Lücke M 2000 Phys. Rev. E 62 6875
[11] Teixeira P I C, Tavares J M and Telo da Gama M M 2000 J. Physique 12 R411
[12] Tlusty T and Safran S A 2000 Science 290 1328
[13] Rosensweig R E 1985 Ferrohydrodynamics (Cambridge: Cambridge University Press)
[14] Dikanskii Y I 1982 Magnetohydrodynamics 18 237
[15] Pshenichnikov A F, Lebedev A V and Morozov K I 1987 Magnetohydrodynamics 23 31
[16] Fannin P C, Scaife B K P and Charles S W 1990 J. Phys. D: Appl. Phys. 23 1711
[17] Scholten P C 1988 Chem. Eng. Commun. 67 331
[18] Murray C B, Norris D J and Bawendi M G 1993 J. Am. Chem. Soc. 115 8706
[19] van Ewijk G A 2001 Phase behaviour of mixtures of magnetic colloids and non-adsorbing polymer PhD Thesis

Utrecht University
[20] Weiss P 1907 J. Physique Radium 4 661
[21] Rushbrooke G S 1979 Mol. Phys. 37 761
[22] Ivanov A O and Kuznetsova O B 2001 Colloid J. 63 64
[23] Jacobs I S and Bean C P 1963 Magnetism, a Treatise on Modern Theory and Materials vol 3, ed G T Rado et al

(New York: Academic) p 271
[24] Cabuil V and Perzynski R 1996 Magnetic Fluids and Applications Handbook ed B Berkovski (New York: Begell

House)
[25] Pshenichnikov A F, Mekhonoshin V V and Lebedev A V 1996 J. Magn. Magn. Mater. 161 94
[26] Porod G 1982 Small Angle X-Ray Scattering ed O Glatter et al (London: Academic) p 17
[27] Dijkstra H 1967 Selected Topics in Solid State Physics ed E P Wohlfarth (Amsterdam: North-Holland)
[28] Pshenichnikov A F 1995 J. Magn. Magn. Mater. 145 319
[29] Maiorov M M 1979 Magnetohydrodynamics 2 135
[30] Cabuil V, Massart R, Bacri J-C, Perzynski R and Salin D 1987 J. Chem. Res. (Suppl.) 130
[31] Bacri J-C, Perzynski R, Salin D, Cabuil V and Massart R 1988 J. Colloid Interface Sci. 132 43
[32] Degiorgio V, Piazza R and Bellini T 1995 Observation, Prediction and Simulation of Phase Transitions in

Complex Fluids ed M Baus et al (Dordrecht: Kluwer)
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